
1

          Forest Resources Assessment Working Paper 161 

CASESTUDIES ON MEASURING AND ASSESSING
FORESTDEGRADATION

INTEGRATINGFORESTTRANSECTS AND REMOTESENSINGDATA
TOQUANTIFYCARBONLOSSDUE TO FORESTDEGRADATION

IN THE BRAZILIANAMAZON

CARLOSM. DE SOUZA
MARKA.COCHRANE

MARCIOH.SALES
ANDRÉL.MONTEIRO
DANILOMOLLICONE

           December, 2009 



Sustainably managed forests have multiple environmental and socio-economic functions which are 
important at the global, national and local scales, and they play a vital part in sustainable development. 
Reliable and up-to-date information on the state of forest resources - not only on area and area change, 
but also on such variables as growing stock, wood and non-wood products, carbon, protected areas, use 
of forests for recreation and other services, biological diversity and forests’ contribution to national 
economies - is crucial to support decision-making for policies and programmes in forestry and sustainable 
development at all levels. 

Under the umbrella of the Global Forest Resources Assessment 2010 (FRA 2010) and together with 
members of the Collaborative Partnership on Forests (CPF) and other partners, FAO has initiated a 
special study to identify the elements of forest degradation and the best practices for assessing them.  
The objectives of the initiative are to help strengthen the capacity of countries to assess, monitor and 
report on forest degradation by: 

 Identifying specific elements and indicators of forest degradation and degraded forests; 
 Classifying elements and harmonizing definitions; 
 Identifying and describing existing and promising assessment methodologies; 
 Developing assessment tools and guidelines 

Expected outcomes and benefits of the initiative include: 
 Better understanding of the concept and components of forest degradation; 
 An analysis of definitions of forest degradation and associated terms; 
 Guidelines and effective, cost-efficient tools and techniques to help assess and monitor forest 

degradation; and 
 Enhanced ability to meet current and future reporting requirements on forest degradation. 

The Global Forest Resources Assessment programme is coordinated by the Forestry Department at FAO 
headquarters in Rome. The contact person is: 
 Mette Løyche Wilkie 
 Senior Forestry Officer  
 FAO Forestry Department 
 Viale delle Terme di Caracalla 
 Rome 00153, Italy 
 E-mail: Mette.LoycheWilkie@fao.org

Readers can also use the following e-mail address: fra@fao.org
More information on the Global Forest Resources Assessment programme can be found at:  
www.fao.org/forestry/fra

The coordinators of this work would like to acknowledge the financial contributions made by the 
Governments of Finland and Norway and by FAO, the GEF BIP programme and ITTO. 

DISCLAIMER 

The Forest Resources Assessment (FRA) Working Paper Series is designed to reflect the activities and 
progress of the FRA Programme of FAO.  Working Papers are not authoritative information sources – 
they do not reflect the official position of FAO and should not be used for official purposes. Please refer to 
the FAO forestry website (www.fao.org/forestry ) for access to official information. 

The FRA Working Paper Series provides an important forum for the rapid release of information related to 
the FRA programme. Should users find any errors in the documents or would like to provide comments 
for improving their quality they should contact fra@fao.org. 



Forestry Department
Food and Agriculture Organization of the United Nations 

Forest Resources Assessment Working Paper 

Case Studies on Measuring and Assessing  
Forest Degradation 

Integrating Forest Transects and Remote Sensing data to Quantify 
          Carbon Loss due to Forest Degradation in the Brazilian 

Amazon

Carlos M. de Souza Jr.,  
Mark A. Cochrane,  
Marcio H. Sales,

André L. Monteiro,
Danilo Mollicone

December, 2009 
________________________________________________________________

Forest Resources Assessment Programme     Working Paper 161 
Rome, Italy, 2009 





Abstract 

Characterizing and quantifying carbon stocks due to forest degradation is one of the greatest 
challenges to advancing in  climate change negotiation on carbon payments through the 
Reducing Emissions from Deforestation and Degradation (REDD) proposal. Defining forest 
degradation, in this context is fundamental, since this process can mean many things to different 
stakeholders. For the purpose of  climate change negotiation, forest degradation must be defined 
in terms of loss of carbon stocks, even though there are other forest ecological and biophysical 
processes that can be degraded, such as biodiversity content, soil erosion and compaction, tree 
species extinction and changes in the forest microclimate and albedo.  In the Brazilian Amazon, 
forest degradation is mainly caused by selective logging, fires and forest fragmentation. These 
degradation processes operate synergistically and recurrently, which can lead to even more 
drastic loss of original carbon stocks from the original forest.  In the past ten years, our research 
team has been involved in projects to characterize forest degradation through forest inventories 
and remote sensing analysis. We have developed a methodology for assessing forest degradation 
based on field transects that allows us to estimate the intensity of forest degradation based on the 
loss of forest biomass stocks, forest canopy damage and soil disturbance,  and as well as carbon 
sequestration due to regeneration of degraded forests. Additionally, we have developed a remote 
sensing methodology to detect and map the extent of forest degradation based on canopy damage 
and small clearings created by logging infrastructure, such as roads and log landings. These field 
and remote sensing methods have been applied extensively throughout the Brazilian Amazon, 
covering different logging, forest fragmentation and fire intensities. In this case study, we 
demonstrate how these methods have been applied and show new results of our recent efforts to 
integrate field and remote sensing data to improve the characterization and quantification of net 
carbon stocks associated with forest degradation in the Brazilian Amazon. Our results hold 
promise for contributing towards REDD negotiation, given that they can provide accurate 
estimations of carbon stock changes due to forest degradation and reliable information for 
defining baselines, as well as improving monitoring, reporting and verification (MRV) of REDD 
projects. 

Keywords: Selective logging, forest burning, forest fragmentation, remote sensing, biomass, 
Amazon.  

Running head: Monitoring Forest Degradation 
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1. Introduction 

Tropical deforestation accounts for 6-28% of annual global anthropogenic emissions (Achard et 
al., 2002; Houghton et al. 2000) and future deforestation projections indicate that this level of 
carbon emissions will continue until 2100 (Sitch et al., 2005). Compensation for reduced 
emissions from deforestation and degradation (REDD) has received increasing attention in 
international climate change negotiations (Santilli et al., 2005; Shalamadinger et al., 2005 ) 
because avoided deforestation can reduce carbon emissions in a cost-effective and timely matter 
and help keep global climate change within tolerable limits (Santilli et al., 2003). There are also 
many co-benefits of keeping forests standing such as maintaining biodiversity, hydrological 
cycle, protecting soil against erosion, and providing medicine, food, and wood (Foley et al. 
2007). However, technical challenges and uncertainties must be overcome to improve carbon 
accounting and support REDD compensation programs (Persson and Azar, 2007). Quantifying 
forest degradation is one of these challenges. In this paper, we show how forest degradation 
caused by selective logging and forest fires in the Brazilian Amazon is being characterized in 
terms of carbon loss by using  forest transects, and detected and monitored using satellite images.

Forest degradation is a type of land modification in which the original land cover structure and 
composition are temporarily or permanently changed, but not replaced by other types of land 
cover (Lambin, 1999). Forest degradation became widespread in the Amazon with the boom of 
logging activity in the mid 1980’s (Nepstad et al., 1999).  Selective logging kills or damages 10-
46% of living biomass in harvested forests (Uhl and Vieira, 1989; Verissimo et al., 1992), and 
directly affects 15-22% of ground area (Johns et al., 1996). Extensive road networks created by 
loggers also encourage unplanned development and increase deforestation rates (Verissimo et al., 
1995). Logging impacts 10,000-20,000 km2/year in the Brazilian Amazon (Asner et al., 2005; 
Nepstad et al., 1999; Matricardi et al., 2007), roughly equal to the area of annual deforestation. 
The area affected by forest fires can be much higher (Nepstad et al., 1999). Forest fires 
substantially increase the extent and intensity of forest degradation (Cochrane and Schulze, 
1999) and recurrent fires and predatory logging interact synergistically to more severely degrade 
forests (Cochrane et al. 1999; Gerwing 2002).

In addition, deforestation fragments the landscape and creates more edges between forests and 
non-forested areas (Laurance et al., 2000). By 1988, the forest area at risk of edge effect (< 1 km 
from the forest edge) in the Amazon was about 150% larger than the total area deforested (Skole 
and Tucker, 1993). Forest edges are affected by solar radiation, wind (Laurance et al. 2000) and 
agricultural fires (Cochrane 2001), potentially causing extensive mortality and decreasing 
biomass drastically within 100 meters to several kilometers of the edges (Cochrane and Laurance 
2002). Consequently, edge effects may contribute significantly to the emission of greenhouse 
gases, such as CO2.

While advances have been made for detecting and mapping forest degradation in the Amazon 
(Cochrane and Souza 1998; Asner et al. 2005; Souza et al. 2005; Matricardi et al., 2007), 
estimation of carbon loss as a function of degradation intensity, and integration of remotely 
sensed data with field-collected biomass data have not yet been accomplished. In this paper, we 
demonstrate how remotely sensed data acquired in the optical part of the electromagnetic 
spectrum can be integrated with forest carbon stocks to characterize degraded forests in the 
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Brazilian Amazon. First we present a brief review of how remote sensing has been used to detect 
and map forest degradation. Then, we show how carbon stocks of degraded forests can be 
characterized using rapid forest transect surveys. We follow this by demonstrating how field data 
of forest carbon stocks can be integrated with optical remotely sensed data to regionally 
characterize forest degradation. Finally, we discuss the challenges to integrating field-derived 
carbon estimates with remotely sensed data.

2. Remote sensing of forest degradation 

Detection and mapping of forest degradation with optical remotely sensed data is more 
challenging than mapping forest conversion due to deforestation because degraded forest ‘pixels’ 
are complex environments with mixtures of different land cover materials (i.e., vegetation, dead 
trees, bark, tree branches, soil, shade) (Souza and Roberts, 2005). Additionally, detectable 
degradation damage disappears within one to two years due to canopy closure and understory 
revegetation, making monitoring not possible after degradation scars disappear (Stone and 
Lefebvre, 1998); Asner et al., 2004; Souza, Jr et al. 2005). A detailed review of the available 
methods to detect and map forest degradation is provided elsewhere (GOFC-GOLD, 2009). 

Several remote sensing techniques have been used to characterize forest degradation in the 
Brazilian Amazon. High spatial resolution sensors, such as Landsat (30 m) and SPOT (20 m) are 
the ones most used (Souza and Barreto, 2000; Souza et al. 2003; Asner et al. 2002, among 
others). At very high resolution (i.e., < 5 m pixel size), images acquired with orbital optical 
sensors, aerial photography and aerial videography have been used as well, for small scale 
analyses (Hurtt et al. 2003). Studies in the Brazilian Amazon have shown that Landsat 
reflectance data have limited capacity for detecting logged forests, with bands 3 and 5 providing 
the best spectral contrast between logged and intact forests (Stone and Lefebvre, 1998). 
Vegetation indices and texture filters also showed some potential for detection of logging 
impacts (Asner et al., 2002; Souza, Jr. et al. 2005).  A recent study demonstrated that textural 
filters applied to Landsat band 5 can enhance detection of logging infrastructure (i.e., roads and 
log landings) (Matricardi et al., 2007).

Higher spatial resolution imagery is more suitable for detection of specific forest degradation 
impacts. For example, Ikonos imagery can easily detect forest canopy structural damage (Read et 
al., 2003; Souza, Jr et al., 2005), but, given the cost for image acquisition and computational 
challenges to extract information from these very high spatial resolution images, their use in 
operational applications such as monitoring logging is limited.

Alternatively, spectral mixture analysis (SMA) has been used to overcome the mixed pixel 
problem in Landsat imagery (Cochrane and Souza 1998). Fraction images derived from SMA 
enhance detectability of logging infrastructure and canopy damage. For example, soil fractions 
enhance log landings and logging roads (Souza and Barreto 2000), while non-photosynthetic 
vegetation (NPV) fractions enhance forest damage (Cochrane and Souza 1998; Souza, Firestone 
et al. 2003) and the green vegetation (GV) fraction is sensitive to canopy gaps (Asner et al. 
2004).
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A novel spectral index combining the information from these fractions, the Normalized 
Difference Fraction Index (NDFI) (Souza, Jr et al. 2005), was developed to more accurately map 
selective logging. The NDFI is computed as: 

SoilNPVGV
Soil)(NPVGVNDFI

Shade

Shade    (1)

where GVshade is the shade-normalized GV fraction given by, 

Shade100
GVGVShade     (2) 

NDFI values range from -1 to 1. For intact forests, NDFI values are expected to be high (i.e., 
about 1) due to the combination of high GVshade (i.e., high GV and canopy Shade) and low NPV 
and Soil values. As forest becomes degraded, the NPV and Soil fractions are expected to 
increase, lowering NDFI values relative to intact forest (Souza, Jr et al. 2005). Canopy damage 
detection caused by forest degradation caused by factors such as logging and forest fires can be 
detected with Landsat image within a year of the degradation event with 90.4% overall accuracy 
(i.e., for three land cover classes, Non-Forest, Forest and Canopy Damage) (Souza, Jr et al. 
2005).

3. Methods 

3.1 Forest transect characterization of degraded forests 

Forty-nine transect inventories were conducted across a range of degraded forest classes most 
common in the Brazilian Amazon: Non-mechanized Logging (NML), Managed Logging (ML), 
Conventional Logging (CL), Logged and Burned Forest (BF) and Forest Fragment (FF) (Table 
1). An additional 12 inventories in Undisturbed Forest (UF) transects were conducted as a 
reference to carbon stock changes in these degraded forest environments. The transects were 
conducted in five regions of the Brazilian Amazon that undergo forest degradation due to 
logging, forest fires and forest fragmentation, and low intensity of degradation in areas of 
reduced impact logging (Table 1). These transects are located in the following regions: 
Paragominas and Santarém, in the state of Pará; Sinop in Mato Grosso; Ji-Paraná, in Rondônia; 
and Itacoatiara in Amazonas. 
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Table 1. Forest classes defined at the field scale. 

Forest class 
(Total number of 

Transects) 
Field description Transect location 

(number of transects) 

Undisturbed Forest 
(UF) 
(n=15) 

Consists of mature, undisturbed forest dominated by 
shade tolerant tree species. 

Itacoatiara, Manaus (n=2) 
Ji-Paraná, Rondônia (n=3) 
Santarém, Pará (n=3)  
Sinop, Mato Grosso (n=4) 

Non-mechanized 
logging (NML) 
(n=9) 

Logged forest without the use of heavy vehicles such 
as skidders and trucks, also known as traditional 
logging. Logging infrastructure (log landings, roads 
and skid trails) are not built. 

Santarém, Pará (n=4)  
Sinop, Mato Grosso (n=5) 

Managed Logging 
(ML) 
(n=14) 

Planned selective logging where the tree inventory is 
conducted, followed by road and log landing 
planning to reduce harvesting impacts. 

Itacoatiaiara, Manaus (n=3) 
Paragominas, Pará (n=5) 
Santarém, Pará (n=1)   
Sinop, Mato Grosso (n=5) 

Conventional 
Logging (CL) 
(n=10) 

Conventional unplanned selective logging using 
skidders and trucks. Log landings, roads and skid 
trails are built causing extensive canopy damage. 
Low intensity understory burning may occur, but 
forest canopy is not burned. 

Paragominas, Pará (n=3) 
Santarém, Pará (n=6) 
Sinop, Mato Grosso (n=3) 

Logged and burned 
(LB) 
(n=6) 

Either non-mechanized logging or logged forests 
where forest canopy has been intensively burned.  

Santarém, Pará (n=3) 
Sinop, Mato Grosso (n=3) 

Forest Fragment (FF) 
(n=8) 

Isolated forest patch created by deforestation with 
abrupt changes on edges to pasture and agriculture 
lands, or with partial transitional edges to secondary 
forests. Fragments in the study area usually subject 
to recurrent NML and fires. 

Ji-Paraná, Rondônia (n=8) 

The forest transects were conducted following a detailed protocol to characterize biophysical 
properties of degraded forests (Gerwing, 2002).  All trees with Diameters at Breast Height 
(DBH) > 10 cm were mapped along 10 m by 500 m transects (i.e. 0.5 ha).  Additionally, sub-
parcels (10 m x 10 m; 0.1 ha) were created every 50 meters along each transect and all trees < 10 
cm DBH were mapped with total ground cover and canopy gaps estimated using a hemispherical 
lens and densitometer.  Aboveground live biomass (AGLB), for each transect (trees > 10 cm 
DBH), was estimated using allometric equations available in the literature (Gerwing 2002).  
Additionally, information on land use and disturbance history was collected during the field 
surveys.  A total of 15 forest transects were conducted in UF; 9 in NML; 14 in ML; 10 in CL; 8 
in FF; and 6 in BF (Table 1). 
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3.2. Remote Sensing 

Landsat and Spot images available for the transect areas were selected for this study. We selected 
images no longer than one year after the forest degradation event to integrate with field transects. 
The images were georeferenced to the NASA GeoCover 2000 Mosaic 
(https://zulu.ssc.nasa.gov/mrsid/), followed by radiometric and atmospheric correction.  
Atmospheric correction was performed using Atmospheric Correction Now 4.0 (ACORN: 
Analytical Imaging & Geophysics, Boulder, CO). The next steps were to perform SMA and 
calculate NDFI. Detailed information of all these procedures can be found elsewhere (Souza, Jr 
et al. 2005).

We next plotted GPS coordinates acquired during field surveys to conduct the forest transects on 
the geo-rectified satellite images in order to extract pixel values of fractions and NDFI. To do 
that, regular polygons of 30x30 pixels were drawn on these images using the GPS coordinates of 
the forest transects as cancroids. Then, 30 random pixels were selected within these polygons to 
extract SMA fractions and NDFI values of the transect areas for the degraded and intact forest 
classes. A regression analysis of forest carbon stocks against NDFI was conducted using the field 
and satellite images data of published results (n = 28; (Souza Jr. et al., 2003; Souza, Jr. et al. 
2005) because we have not completed the pre-processing of all satellite images for all transect 
areas yet.

4. Results 

4.1 Forest Transects 

The mean AGLB of UF was 377 Mg.ha-1with minimum biomass for the Ji-Paraná site (273 
Mg.ha-1) and maximum for Santarém (497 Mg.ha-1). This result is compatible with field AGLB 
estimates using very large forest plots (Keller et al. 2001) and within the range of average values 
reported for the Brazilian Amazon region (Malhi et al., 2006 ; Saatchi et al., 2007) NML was 
found only at the  Sinop (301 Mg.ha-1) and Santarém (418 Mg.ha-1) sites.  NML showed a 15% 
reduction in the original AGLB in Santarém and Ji-Paraná. However, if we compare the change 
in mean AGLB stocks in NML sites relative to the mean AGLB of UF (377 Mg.ha-1), the 
decrease was only 6% (Table 2).

The ML degradation class was found in all sites except Ji-Paraná. The mean AGLB of this class 
was 343 Mg.ha-1 which represents a reduction of 8% relative to the mean AGLB of UF. 
However, we found higher AGLB reduction when compared to the AGLB of each site. For 
example, ML reduced the AGLB stocks relative to UF by 18% in Sinop and 12% in Itacoatiara. 
For the other sites, the changes were similar to the mean reduction value (Table 2).

A greater mean AGLB reduction (11%) was found for CL (335 Mg.ha-1) relative to the mean 
AGLB of UF. The highest change was found in Santarém where CL reduced 28% of the original 
UF AGLB. FF also consumed the original AGLB. In Ji-Paraná, the only site that we sampled in 
this class, showed 27% of reduction relative to the mean AGLB of UF. The class of forest 
degradation that showed the highest change in the original AGLB was BF, with an average 
reduction of 30% but reaching 44% in Santarém and 34% in Sinop (Table 2).
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We ran a non-parametric test (Wicoxon rank test) to test whether the changes in AGLB of the 
UF and the forest degradation classes are statistically different. The results of this test did not 
show a statistically significant difference of the AGLB means among the classes UF, NML, ML 
and CL. The other degradation classes (BF = 274 Mg.ha-1 and FF = 260 Mg.ha-1), showed 
statistically significant mean biomass values between each other, and among all other 
degradation classes (Table 2). These preliminary results imply that UF, NML, ML CL could not 
be statistically separated at the field level based only on AGLB, but FF and BF could. We 
believe that using average AGLB values to run this test minimizes the difference in changes of 
biomass stocks due to degradation. Having this test run for each site could potentially show more 
differences, as has been demonstrated for Paragominas (Gerwing 2002). Because of the limited 
number of transects for each forest degradation class, and because we could not conduct the 
forest transect surveys before the degradation event to estimate the original AGLB of the 
undisturbed forest, we were not able to generate site-specific statistical analysis.

Assuming that carbon makes up 50% of the AGLB, we can then demonstrate how carbon stocks 
vary with degradation intensity (Figure 1). These changes are similar to the AGLB mean changes 
presented above. The FF and BF degradation classes had significantly reduced carbon stocks 
(i.e., 28 and 30%, respectively), whereas the NML, ML and CL degradation classes each had 
<10% carbon loss. However, as previously noted, these results must be interpreted with caution 
because using a regional average of aboveground forest carbon stocks can hide the effect of 
change in carbon stocks due to forest degradation. For example, we found that in Santarém, the 
site with the largest AGLB for UF (496 Mg.ha-1, i.e., 248 MgC.ha-1), the carbon stocks of the 
NML, and CL disturbance classes decreased by 15 and 28% relative to UF class. In addition, 
AGLB varies among the forest transect sites. Therefore, using global mean AGLB values can be 
misleading because of the high spatial variability of biomass across the landscape (Houghton, 
2005). Nonetheless, our preliminary results show that mean of carbon stocks decreases with 
degradation intensity.
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Table 2. Remote sensing capability to detect undisturbed forest and various forest degradation 
classes with Landsat type of sensors. 

Class
(# Transects1) Class Description 

 Aboveground 
Forest Live  
Biomass2

(ton/ha)
Remote Sensing Detectability 

(1) Undisturbed 
Forest  

(n=15)

Consists of mature, undisturbed old growth forest dominated 
by shade tolerant tree species. 

376.00 (100.00) 

(5),(6) 

Easily detected. Forest type differentiation 
is challenge.

(2) Non-
mechanized
logging 

(n=9)

Timber removal without the use of heavy vehicles such as 
skidders and trucks for various purposes such as wood 
consumption and fuel production. Gradual forest biomass 
loss occurs. Logging infrastructure (log landings, roads and 
skid trails) is not built. 

353.00 (66.50) 

(5),(6) 

Not directly detectable.

(3) Managed 
Logging 

(n=14)

Planned selective logging where the tree inventory is 
conducted, followed by road and log landing planning to 
reduce collateral harvesting impacts. 

343.00 (91.30) 

(1),(2),(3),(4) 

Forest canopy damage marginally 
detected. Logging infrastructure (i.e., 
roads and log landings) are visible and 
may be used as a proxy to estimate forest 
area degraded. 

(4) Conventional 
Logging 

(n=10)

Conventional unplanned selective logging using skidders and 
trucks. Log landings, roads and skid trails are built causing 
extensive canopy damage and tree mortality. Low intensity 
understory burning may occur, but forest canopy is not 
burned 

335.00 (66.90) 
(1),(2),(3),(4) 

Forest canopy damage and logging 
infrastructure easily detected up to 2 years 
since disturbance event.. 

(5) Forest 
Fragment  

(n=8)

Isolated forest patch created by deforestation with abrupt 
changes on edges to pasture and agriculture lands, or with 
transitional edges to secondary forests. Fragments in the 
study area usually subject to recurrent disturbances cause by 
logging and fires. 

274.00 (77.15) 

(1),(2),(3),(4) 

Isolated forest patches > 2 ha easily 
detected. 

(6) Burned 
Forest 

(n=6)

Any type of degraded forests heavily and/or recurrently 
burned causing extensive canopy damage and tree mortality. 

260.90 (43.60) 

(1),(2),(3),(4) 

Canopy forest scars easily detected up to 
2 years since disturbance event. 

1 We mapped all trees with Diameter at Breast Height (DBH) greater than 10 cm along a 10 m by 500 m transect. In 
addition, ten sub-parcels (10 m x 10 m) were created every 50 meters along each transect. All trees where mapped 
within the sub-parcels and ground cover and canopy cover were estimated. Aboveground biomass was estimated 
using allometric equations available in the literature, adapted specifically by Gerwing (2002), for degraded forests 
and estimating vine biomass. 
2 Biomass mean and standard deviations within brackets. In the biomass values, forest class numbers in brackets 
indicating statistical separability at 10% significance level, using the Wicoxon non-parametric rank test. For 
example, the biomass mean of Undisturbed Forest (class 1) is statistically different from the biomass means of 
Forest Fragments (class 5) and Burned (class 6). 
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Figure 1. Change in above ground live biomass as a function of degradation intensity. Bars 
represent standard error of the mean value and line the percent change of C mean relative to 
intact forest.

4.2 Integration of satellite data and transect data 

Previous study showed that NDFI is more sensitive than individual SMA fractions to these types 
of canopy changes described above (Souza and Roberts, 2005). As an example, Figure 2 shows a 
NDFI time-series for a region with three forest transects for the Sinop site. Selective logging first 
occurred in this area in 1998 as pointed out by disconnected linear features indicating logging 
roads and canopy damage scars highlighted by yellow to orange colors (Figure 2a). NDFI values 
of the selectively logged forest in 1998 increased (i.e., dark green color) in 1999 as canopy gaps 
closed. A new 1999 logging signal appeared in the NDFI image adjacent to the 1998 logged area. 
In 2000, both logged forest areas were subjected to a severe fire event, burning approximately 
5,000 hectares (Figure 3c), which lowered NDFI values more drastically. Two years later, in 
2003, nearly all detectable forest degradation signals had disappeared, implying that forests are 
intact.  
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Figure 2. Time-series of NDFI images showing forest degradation due to logging and forest fires 
in Sinop, Mato Grosso. The NDFI degradation signal (yellow to orange colors) change within 
one to two years. Dark green colors are forests undamaged by selective logging and/or burning 
(NDFI values >0.75). Orange to yellow colors indicate a range of forest canopy damage (0 > 
NDFI < 0.75). Areas in white have negative NDFI values (<50% of GV) and represent bare soil.  
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The example of Figure 2 shows how dynamic the forest degradation process is and the need to 
monitor these changes in an annual basis. Additionally, NDFI decreases with degradation 
intensity. Given these characteristics, we hypothesized that NDFI values should respond to 
changes in AGLB stocks due to forest degradation processes as indicated by the field 
measurements (Figure 1). We investigated this relationship for transect sites where satellite 
imagery [SPOT 4 and Landsat; Souza et al. 2003 and Souza, Jr et al. 2005, respectively] was 
available within less than one year of the occurrence of forest disturbance. We then found out a 
negative linear relationship between NDFI and AGLB as expected (Figure 3). This means that 
we found higher NDFI for UF and lower ones for the most degraded type of forest (BF). 
However, if we use satellite images acquired more than one year after the degradation event, this 
strong relationship disappears. Therefore, these preliminary results indicate that monitoring 
AGLB changes caused by forest degradation may be possible with optical remotely sensed data 
as long as the images are acquired within the time frame in which the degradation event can be 
detected. 

Figure 3.  Relationship between AGB and NDFI values for degraded forest of Paragominas 
(Pará) and Sinop (Mato Grosso). 
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5. Challenges to monitoring forest degradation 

Although forest degradation can be detected and mapped and  degradation intensity can be 
inferred from satellite images, technical challenges and limiting factors remain that need to be 
overcome in order to adequately monitor forest degradation in REDD projects: 

Quantifying biomass in degraded forests. Methods for measuring and estimating 
carbon stock changes for different carbon pools in forested areas are well-established in 
the scientific literature and some have already been approved by the United Nations 
Framework Convention on Climate Change (UNFCCC). However, monitoring forest 
degradation requires documenting forest disturbance history well, specifically recurrent 
degradation events and time since last disturbance. This information is crucial for 
quantifying carbon stock changes. However, in many cases it is not possible to 
reconstruct the land use and forest degradation history of a particular site, as was the case 
for some of the forest transect sites surveyed in this study. Another factor that should be 
taken into account is the spatial variability of biomass. In this study, we used the mean 
biomass value for UF as a reference to estimate carbon loss due to different intensities of 
forest degradation. While this approach is useful for demonstrating how carbon stocks 
vary with degradation intensity, using local estimates of carbon in UF is preferred 
because forest biomass stocks vary across regions (Houghton, 2005).
Detection and mapping of forest degradation. There have been substantial advances 
toward remote sensing of forest degradation in recent years, and new sensors are being 
tested or planned that may allow biomass to be monitored directly (GOFC-GOLD 2009). 
Previous studies demonstrated that the sub-pixel approach using SMA is more sensitive 
than ‘whole-pixel’ classifiers in detecting degraded forest environments (Asner et al. 
2005); Souza, Jr et al. 2005). There are, however, limitations to applying these types of 
techniques to monitor forest degradation.  Monitoring degradation requires annual 
acquisition of satellite images because the rapid changes in degraded forests inhibit 
detection and mask out the intensity of the degradation after one year (Cochrane and 
Souza, 1998; Souza and Roberts 2005). The optical remote sensing techniques presented 
here cannot be applied in cloudy conditions, making some regions impossible to monitor. 
Finally, detection and mapping of low intensity forest degradation (i.e., NML, ML) is 
limited to imagery with very high spatial resolution. The cost of such imagery is still 
prohibitive for operational monitoring projects over large areas.
Field-satellite integration. Monitoring changes in carbon stocks due to forest 
degradation requires integration of remotely sensed data with site-specific biophysical 
field attributes. NDFI, a continuous remote sensing variable, can respond to biomass 
changes due to forest degradation. However, it is important to highlight that this type of 
correlation collapses one year after the degradation event. This happens because the 
NDFI value of degraded forests changes rapidly as new foliage closes forest gaps,  but 
the biomass of the degraded forest, most of which is in woody stems, does not recover at 
the same rate. Therefore, caution, must be taken when using this approach so that detailed 
information of the degradation history of the project area is established and verified with 
initial field inspections. Ideally, it is also best to calibrate the remote sensing variables 
with local forest biomass, instead of using regional means as presented in this study. 
Limited transect data covering all degradation intensities and the lack of an established 
REDD project area prevented us doing so in this study.
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6. Conclusions 

Reduced emissions from deforestation and degradation (REDD) has recently gained acceptance 
as an approach for mitigating climate change (FCCC/SBSTA/2007/L.10). The concept behind 
REDD is that countries that prevent destruction likely to occur to portions of their tropical forests 
will reduce their expected carbon emissions, thereby moderating climate change and warranting 
recompense or credit for defensible mitigation activities. REDD has the potential to substantially 
reduce carbon emissions in a cost-effective and timely manner, helping to keep global climate 
change within tolerable limits. However, degradation of standing forests needs to be addressed 
when calculating reduced emissions from deforestation and the overall feasibility of 
implementing REDD during the post-Kyoto commitment period must be evaluated. We 
demonstrate how the full range of forest degradation intensity in the Brazilian Amazon can be 
quantified and characterized in space and time. We have provided a short review of tested and 
validated remote sensing methods for mapping and monitoring forest degradation and discussed 
the current challenges and limitations to implementation of operational systems to keep track of 
forest degradation. Our results show that the effects of forest degradation, if they are not 
accounted for, can result in substantial overestimation of the carbon ‘protected’ by projects that 
reduce deforestation. 

In the Brazilian Amazon, only 36% of forests that are logged in any given year are deforested 
within the next five years (Asner et al. 2006). This means that the area of forest degraded by 
logging tends to increase every year. The forest area degraded by fires has not yet been fully 
mapped, but can potentially be much larger than the annual area logged (Nepstad et al. 1999). 
Forest degradation in our study sites reduced  aboveground carbon stocks by up to 30% on 
average, but areas of recurrent disturbance by fires and logging can be reduced by >50% 
(Gerwing, 2002; Cochrane and Schulze, 1999). Potential disturbance-related carbon stock 
changes in forests can reduce the effectiveness of any mitigation activity under REDD, leading 
to questions or doubts about a project’s additionality (i.e. are mitigation activities beyond 
business as usual) and permanence (i.e. the likelihood that mitigating activities will be effective 
over the long term). To ensure that emissions from tropical forests will really decrease, it is 
critical that REDD mechanisms account for emissions from forest degradation. This requires 
national or regional forest monitoring systems able to assess carbon stock changes due to 
degradation processes. We have related possible technical solutions for monitoring changes in 
remaining forests that should be applied in future. But historical data on forest degradation are 
rare and, even in Brazil where deforestation is being monitored since the late 1980’s, including 
emissions from forest degradation in the emission historical reference scenario for REDD is 
problematic. Thus, the magnitude of historical forest degradation processes will have to be 
estimated through modeling and/or other indirect methods in order to minimize risks of 
overestimating avoided emissions to the atmosphere under REDD. Because the amount of 
carbon removed and the annual area affected can be significant, forest degradation needs to be 
recognized as one of the major GHG emission sources in tropical forests and targeted for 
mitigation activities, similar to what is being done for deforestation, in order to effectively 
address climate change and ensure the sustainability of all forest lands. 
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